Dynamically Reconfigurable Networks-on-Chip Using Runtime Adaptive Routers
نویسندگان
چکیده
The recent advances in IC technology have made it possible to implement systems with dozens or even hundreds of cores in a single chip. With such a large number of cores communicating with each other there is a strong pressure over the communication infrastructure to deliver high bandwidth, low latency, low power consumption and quality of service to guarantee real-time functionality. Networks-on-Chip are definitely becoming the only acceptable interconnection structure for today’s multiprocessor systemson-chip (MPSoC). The first generation of NoC solutions considers a regular topology, typically a 2D mesh. Routers and network interfaces are mainly homogeneous so that they can be easily scaled up and modular design is facilitated. All advantages of a NoC infrastructure were proved with this first generation of NoC solutions. However, NoCs have a relative area and speed overhead. Application specific systems can benefit from heterogeneous communication infrastructures providing high bandwidth in a localized fashion where it is needed with improved area. The efficiency of both homogeneous and heterogeneous solutions can be improved if runtime changes are considered. Dynamically or runtime reconfigurable NoCs are the second generation of NoCs since they represent a new set of benefits in terms of area overhead, performance, power consumption, fault tolerance and quality of service compared to the previous generation where the architecture is decided at design time. This chapter discusses the static and runtime customization of routers and presents results with networks-on-chip with static and adaptive routers. Runtime adaptive techniques are analyzed and compared to each other in terms of area occupation and performance. The results and the discussion presented in this chapter show that dynamically adaptive routers are fundamental in the design of NoCs to satisfy the requirements of today’s systems-on-chip. DOI: 10.4018/978-1-61520-807-4.ch002
منابع مشابه
A Review of Optical Routers in Photonic Networks-on-Chip: A Literature Survey
Due to the increasing growth of processing cores in complex computational systems, all the connection converted bottleneck for all systems. With the protection of progressing and constructing complex photonic connection on chip, optical data transmission is the best choice for replacing with electrical interconnection for the reason of gathering connection with a high bandwidth and insertion lo...
متن کاملImmediate Neighbourhood Temperature Adaptive Routing for Dynamically-Throttled 3D Networks-on-Chip
In this paper, we present the Immediate Neighbourhood Temperature (INT) routing algorithm which balances thermal profiles across dynamically-throttled 3D NoCs by adaptively routing interconnect traffic based on runtime temperature monitoring. INT avoids the overheads of system-wide temperature monitoring by relying on the heat transfer characteristics of 3D integrated circuits which enable temp...
متن کاملMulti-controller reconfiguration system for FPGAs
Adaptivity is one of the most critical issues related to System-on-Chip (SoC) design. In order to be runtime adaptive, SoC have to take into account changes related to user preferences and environment at runtime. Dynamically reconfigurable SoC, such as those implemented on Field Programmable Gate Arrays (FPGAs), are a good solution for runtime adaptivity. Dynamic reconfiguration allows FPGAs to...
متن کاملA Routing-Aware Simulated Annealing-based Placement Method in Wireless Network on Chips
Wireless network on chip (WiNoC) is one of the promising on-chip interconnection networks for on-chip system architectures. In addition to wired links, these architectures also use wireless links. Using these wireless links makes packets reach destination nodes faster and with less power consumption. These wireless links are provided by wireless interfaces in wireless routers. The WiNoC archite...
متن کاملNon-Blocking Routers Design Based on West First Routing Algorithm & MZI Switches for Photonic NoC
For the first time, the 4- and 5-port optical routers are designed by using the West First routing algorithm for use in optical network on chip. The use of the WF algorithm has made the designed routers to provide non-blocking routing in photonic network on chip. These routers not only are based on high speed Mach-Zehnder switches(Which have a higher bandwidth and more thermal tolerance than mi...
متن کامل